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S U M M A R Y  
The theory of the acousto-electric effect is extended to a mechanically shock strained semiconductor by use of the 
Boltzmann equation with Maxwellian distribution of free electrons. From the linearized equation the explicit expres- 
sion for the electric field behind the shock front is found in terms of Hermitian polynomials. The result suggests that 
particularly at low temperatures one may observe an appreciable current behind the shock front. 

1. Introduction 

It is known [1, 2] that when an acoustic wave travels through a solid medium containing 
mobile charges, a d.c. electric field appears along the direction of wave propagation. This effect 
is due to a wave-particle drag when mobile charges lag behind the motion of wave because of 
a finite time required to reach equilibrium. It is also called "acoustic-electric effect" by 
Parmenter [-1], the first investigator. 

Since an infinitely weak shock is an acoustic wave, one will reasonably expect a similar wave- 
-particle' drag phenomenon in a shock strained medium with mobile charges. But of course 
whether this effect for shock wave measurements is significant or not depends upon the magni- 
tude and the relaxation time of unequilibrium free charges during the shock propagation 
through a sample. Brooks [-3] speculated a long relaxation time of excited electrons and re- 
cently Graham et al. reported [4] that relaxation times in Germanium might be as long as 
10- 7 sec. This is not small enough to be completely ignored when one recalls the time scale of 
shock measurements (say 10 .6 sec) in solids. 

Hence it will be interesting to see, theoretically, under what circumstances the preceding 
effect might be important in shock measurements. This is the first of our attemps in that 
direction and for simplicity a semiconductor with free electrons of Maxwellian distribution is 
chosen. 

The important difference here between a shock and an acoustic wave is that a shock is 
discontinuous at its front and a shocked medium will acquire a finite particle velocity with 
respect to rest co-ordinates. Hence when there exists a d.c. field in moving material co-ordinates 
attached to a shock strained medium, this field obviously will appear as an apparent current in 
rest (say laboratory) co-ordinates. 

Therefore our object is to determine the magnitude and shape of this current behind the 
shock front. This is done in what follows by solving a one-dimensional Boltzmann equation 
with Maxwellian distributions of mobile electrons. In section 2 the equations are set out for an 
idealized steady state situation, and in section 3 the solution is sought for a linearized version 
by expanding the distribution function in terms of Hermitian polynomials [5], [6]. 

2. Electrons in a Shocked Semiconductor and Boltzmann Equation 

Let us assume that a steady one-dimensional plane shock is moving from + oe to - oe at a 
speed U (Fig. 1) in a semiconductor. Then there will be a discontinuity in pressure, density, etc. 
across the shock front, which is assumed to be infinitely thin on the ground that the relaxation 
time of phonons is much shorter than that of electrons. 
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In the upstream where the material is undisturbed free electrons are in equilibrium with 
the lattice and their velocity distribution in one dimension can be given approximately by [7], 

fo (v) = no (riO~n) �89 exp (-/~oV2), (1) 

where 8o is mo/2kTo, no is the number of electrons in unit volume, To is temperature, k is 
Boltzmann constant and m o is the electron mass. For an intrinsic semiconductor no is equal to 

2 (2rim 0 k To~h2) ~ e x p ( -  Eo/2kTo), (2) 

where h is the Planck constant and E o is the energy gap. 

Shock Front 

p = o  

p 

u 

Figure 1. A plane shock. 

However when a medium is suddenly overtaken by a shock wave, it is very unlikely that all 
of the free electrons are in thermal equilibrium and obey a Maxwell distribution such as (1). 
Furthermore at the shock front two lattices, strained and unstrained, have not established an 
equilibrium contact and they have different electron distributions. But of course they start 
immediately to redistribute their electrons at the contact in such a way that at equilibrium they 
have equal Fermi surfaces. Here we assume separate distribution functions across the shock 
front, the validity of this assumption being further elucidated in section 3. 

Then one model which we can use is a double-humped distribution function f l  (v) at the 
front, when approached from the strained side, i.e., 

f l  (v) = fo (v) + n a 031/n? exp { -/~1 (v -  u) 2 }, (3) 

where the subscript "1" denotes values in a shocked state and u is the particle velocity, no is 
also adjusted for density change. It means that the initially existing free electrons are left 
undisturbed when the lattice is suddenly compressed, but the newly created ones, due to the 
changes in E 0 etc., are in equilibrium with the strained lattice. Since no experiments are avail- 
able to determine a more realistic form of (3), it is chosen on the basis of simplicity and mathe- 
matical manageability. However if one accepts a spherical energy surface and the experimental 
fact [-4] that the intrinsic resistivity of Germanium depends mainly upon E o under a shock 
strain, (3) will be a reasonable function as a first approximation. 

Downstream, far behind the shock front all the electrons will be in equilibrium in a strained 
lattice. Hence they should have a velocity distribution given by 

n (fla In) ~ exp { -/~1 (v-- u)2}. (4) 

If there is no sink of electrons and if a sample remains intrinsic, n is given by 

n = 2 (2nmx k 7'1/h2) ~ exp ( -  Eo. ~/2kT~). (5) 

Hence our concern is primarily with the relaxation off(v) from (3) to (4) and with solving a 
Boltzmann equation. 

The one-:dimensional Boltzmann equation for an electron distribution function f ( x ,  v, t) is 

f~ + vj%- (eE/m)f~ = (ft)collision , 
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where the subscripts denote partial differentiations. The electric field E satisfies the Poisson 
equation, 

Ex = (4roe/e)(n + - f dv) , 
- - o 0  

where n § is the density of singly ionized lattice atoms per unit volume and is assumed to be 
equal to n in the shocked lattice, e is the dielectric constant of a semiconductor. 

Since we are assuming a steady state propagation of shock, it is best to treat the problem 
in the co-ordinate z attached to the shock front (Fig. 2). Then considering the front as the origin 

Shock Front 

U 
w 

7=0 

U-u 
v 

Figure 2. The z co-ordinate and the motion of material. 

of the new co-ordinate z one finds a steady state Boltzmann equation in which a simple 
relaxation model is assumed for the collisional term, 

(v+ U)f~-(eE/m)f~ = ( n O - f ) ~ z ,  (6) 

dE/dz=(4rce/e)(n- j'~_fdv) for z > O ,  (7) 

where z is the relaxation time and �9 is 

(/~l/rc) ~ exp { - fll ( v -  U + u)Z} . (8) 

The boundary conditions (3) and (4) are, in the z co-ordinate, 

f (+O,  v) = no(flo/~) ~ exp{-r io(V-  U) 2} + nl(/~l/rc) ~ exp{- /31(v-  U+u)2},  (9) 

f(oo, v) = nO(v). (10) 

Hence from (7), (9) and (10) it is found that 

dE( +O)/dz = dE(o~)/dz = O. (11) 

In order to solve the equations (6) and (7) with (9)-(11), we make further simplifications based 
upon the experiments [4]. They are 

m o = m l = m ,  To= T I=  T,  f l o = f i l = f l ,  and n o ~ n  1. 

Since for a shock of 44 kb in Germanium, (T1-  To)/To < 0.02 and (Eo, o-Eo,~)/Eo, o=0.33, 
they can be justified as a first approximation. 

3. A Linear Isothermal Solution 

Since no~ nl, it is assumedf(z,  v) can be put in the form 

f (z ,  v)= nlO +F(z,  v), (12) 

where nl �9 >> F. 
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Then ignoring F in the second term of (6) one finds 

(v + U)Vz - (nl eE/m) r = (no �9 =- e)/r . 

0 
In order to solve (13) and (14) we expand F in Hermitian polynomials. 

This expansion enables us to integrate (14) first. 
Let 

F =  ~ g , (z )H,(y)exp(-y2) ,  
n = O  

where y = (v - U)fi -~. 
This choice of y is based on the condition (compare (9) and (12)) 

e(+O, v)= no(B/u) exp{-f l  (v-  U)2}. 

The orthogonatity relation of the Hermitianpolynomials is given by 

? H. (y) H,, (y) exp ( -  yZ) dy = 2" n ! 7~�89 (~n ,m " 
- 0 0  

Then the boundary conditions for g,(z) can be found as follows: 
Since 

oo 

F( +O, v)= no(flfiz) ~ e x p ( - y  2) = ~ g,(O)H,(y) e x p ( -  y2) , 
o 

F(oo, v)= no(ill,z) ~ exp { -  ( y + , ~ u )  2} = ~, g.(oo)H,(y)exp(-y2) ,  
o 

the coefficients g,(O) are 

go (0) = "o (ill7:) -~ , g,(0) = 0 for n r 0,  

and it is found that 

g . ( ~ ) =  {no(fl/Tc)~/2"n!} (co u--~H,(y)exp{-(y+fl-~u) 2} dy.  
j -  oo 

This integral can be evaluated by the formula 

oo _ 1  * 2 

q , =  ~ : y "exp{ - ( y+ f i~u ) }  dy,  
oo 

[n/21 

= Z (-f l~u)"-2'n!/22' i!(n-2i)  !" 

Y. Horie 

(13) 

(14) 

(15) 

(16) 

(17) 

i = o  

For example we have 

q o = l ,  q l = - f l � 8 9  
and 

go(O) = no(~/~)~, (18) 
gl (m) = -noflU/U ~ . (19) 

Since the reference point of E(z) can be taken anywhere and E(0) is so chosen, (14) can be 
integrated as 

, [ii exp' 
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But using the orthogonality relation (16), one finds 

E(z )=  (&ze/e){noz-(n/fl)~ f l  go(z)dz } �9 

Then from (13) and (20), it is found that 

GO gO 

z (v + U) Z g',(z)H, e x p ( -  y2) + Z g, H, e x p ( -  y2) _ no~, 
o o 

(20) 

- (4tern1 e2/me) no z - ( n / f l )  ~ (z) dz qJv = O. 

By use of (16) and the recurrence relation 

11, + 1 = 2yH, - 2nil ,_ 1 , 

we get an infinite set of second order equations with constant coefficients ; 

G;' + (1/2~ U) G~, + Q, rr ~ Go + (1/2 Ufl-}){ (n + 1) G'~+ I + 1/2G~_ 1 } = R ,  + n o zfl �89 Q, 

for n = 0 ,  1,2 . . . .  
where 

G, = g,(z)dz , 
o 

and 

(21) 

2 = 4nnl e2/me. fop 

Unfortunately it is not possible to get the complete solution. But from the point of view of 
experimental work, one's concern is not with a complete solution of G, (or g,) but rather, as 
mentioned in section 1, with E(z). Then a solution by truncating G, (n=0, 1 . . . .  ) at a finite 
number, as we shall see shortly, provides an approximation of E(z). It is, however, difficult to 
assess whether or not the solution thus obtained yields a good approximation to the distribu- 
tion function F(z, v) for the entire domain of z and v. 

(A) A single term solution; F = g o H  o exp(-y2) .  
From (21)one finds the differential equation for go (z). 

gb + (1/2zU)go = nofl~/2n~z U . 

Hence it can be shown that the solution which satisfies the boundary conditions (17) and (18) is 

go = n o ( / V ~ ? .  

Then from (20) E(z) becomes zero for all z. In fact if one assumes F=goHo  exp(-y2) ,  this is 
what we expected from (14). Physically it means that there is no change in the old distribution 
function. 

(B) Two term solution; F=(goHo + gl H j e x p ( - y 2 ) .  
Now one has a set of equations 

G'~ + (1/2zU)G'o +(1/2Ufl})g'~ = nofl~/2rc~zU , 

(1/4Ufl})G; - (c@fl}/2U)Go +g'a + (1/2zU)gx = -noflU/2rt}rU - noOpflZ/2n:2 ' U ,  

where G', is replaced by gl for convenience. 
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The solution is straightforward. The characteristic roots 2i are 

21 = 0  

22, 3 = - 4 f l U / ' ~ ( 8 f l U  2 -  1)_+ {(2f)�89 2 - 1)} {(1 -Sf lU2)d-( l / 'c2(D2) ~ . (22) 

Hence if 

8flU2< 1 or 2U<(kT/m)  ~ , 

there exists an exponentially growing solution. Since the squared average electron velocity 
(v2) + is ( kT /m)  § this growing solution will set in when the average velocity is twice the shock 
speed. This may be due to the truncation error but is likely to be from the idealized boundary 
conditions at z = 0. Because for the latter if the average electron velocity exceeds the shock 
velocity a great deal, we are ignoring the majority of electrons outrunning the shock front 
(see Fig. 3). But our assumption on a contact of shocked and undisturbed lattices is implicitly 

Shock Front 

at (kT/m) 1/2 

Y. Hor ie  

AtU 

Figure 3. The motions of shock front and average electrons. 

stating the condition that U must be greater than the average speed ( kT /m)  �89 Of course one 
can always discard the exponentially growing solution on physical grounds, but then it can 
be shown that the solution Go which satisfies its boundary conditions is again no(fi/n)~z. 

Therefore for the two term solution, let us assume 

8flU 2 > 1 . ~ (23) 

Then one has 
(i) two negative real roots for 1 + 1/~2o9~ > 8flU2 > 1, 
(ii) two conjugate imaginary roots for 8flU 2 > 1 + 1 / z 2 ~  2. 

By way of illustration let us study the first case which in fact corresponds to a temperature not 
too close to absolute zero. From (22) one can immediately draw the general solutions Go and 
gl ;  

Go = al  + a2 exp (22z) + a3 exp (23z) + noufl�89 ~ + nofi~z/rc ~ , (24) 

g l = m l a l  + m2a2 exp (22z)+ m3a3 exp (23z), (25) 

where mi are given by 

m 1 = fl�89 

m~ = - 2~r  ~(;~2 + 1 / 2 ~ v ) ,  

m3 = - 2fl~U(23 + 1/2zV), 

and where the forms of particular solutions were already chosen to be the best for satisfying 
the boundary conditions. It should be pointed out that since (24) and (25) are the truncated 
solutions, they cannot satisfy all of their boundary conditions, unless it happens by accident as 
in (A). But what we need is Go(z), so we can put all the errors into gl(z). If we add a third 
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term in the expansion of F, we can choose the solutions Go and 91 for which all of their 
boundary conditions are satisfied, but not some of 92- 

Since our interest is in the vicinity of z = 0 where the two term solution is most valid, one 
finds, by introducing an error in 91(oo), the following values for the coefficients 

= 2 1 al - / /*  noU/O~,, ~ (1 + co~ ~2), 

a2 = - / /~no u~23/~ ~(23-  22)(1+ co~ ~2) , 

a3 = - / /~noU~2/~ ~(~3-  ~2)(a +~4 ~2). 
Then from (23) and the Poisson equation (14) it is found that the apparent charge p behind the 
shock front is. 

p (z) -- no e//�89 u {exp (43 z) - exp (42 z)}/2 ~ COp z { (1 - 8//U 2) + 1/@ z2}, (26) 

where 23 > 22 is assumed. 

p(z) 

\ 
\ 

\ p(z) ~- z ( - n o  e)(2u//)/~(8//0 2 - -  1). 

Figure 4. The apparent charge behind the shock front. 

m 

z 

4. Discussion 

Since the z co-ordinate is moving with the speed U, the charge density p appears as a current 
pU when looked at from laboratory co-ordinates. Whether or not this is easily measurable 
depends upon condition (23). For example if one substitutes a shock speed of 6 mm/#sec 
which is quoted [4] as the elastic shock speed in Ge for 44 kb, one obtains the critical tempera- 

t u r e  of 9~ This is probably too cold for shock measurements to be carried out. 
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p(z) is schematically shown in Fig. 4. Because of the nature of H,, (26) is a good approximation 
only for a small z. Then expanding the exponential functions, it is found that 

p (z) -~ z ( -  n o e)(2u//)/z (8//U 2 - 1). (27) 

A word about the error in 91(oo) is in order. Substituting ai into 91(z), we obtain the value 
g l ( ~ )  as 

g l (o0) = -//nou/rc ~ (1 + co 2 z:).  (28) 

Hence it is desirous to have the condition 

a)vv~ 1. 

In contrast, it is interesting to note [8] that the possibility of a plasma oscillation in an ionized 
medium is COpZ >> 1. 
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However if one raises the speed to 1 cm/#sec the temperature is 26~ and it may not be an 
impossible temperature. But even then it is obvious from (2) that an intrinsic semiconductor 
will not serve as a good sample for demonstrating a wave-particle drag unless the energy gap 
is or becomes very narrow. 

P/( + noe)! 

-1 

- 2  

0,1 0,2 --.. . .  ! 

z(in mm) 

Figure 5. An hypothetical example of U =  106 cm/#sec; u=  105 cm//~sec and ~= 10 -8 sec. 

In Fig. 5 in order to get an idea of the magnitude, an hypothetical case of (27) is demon- 
strated. 
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